Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
14th International Conference on Soft Computing and Pattern Recognition, SoCPaR 2022, and the 14th World Congress on Nature and Biologically Inspired Computing, NaBIC 2022 ; 648 LNNS:167-181, 2023.
Article in English | Scopus | ID: covidwho-2290614

ABSTRACT

Various strains of Coronavirus have led to numerous deaths worldwide with CoViD-19 being the most recent. Hence, the need for various research studies to determine and develop technologies that would reduce the spread of this virus as well as aid in the early diagnosis of the disease. The Severe Acute Respiratory Syndrome CoV (SARS-CoV), which emerged in 2003, Middle East Respiratory Syndrome CoV (MERS-CoV) in 2012 and Severe Acute Respiratory Syndrome CoV 2 (SARS-CoV-2) which is generally regarded as CoViD-19, in 2019 have very similar symptoms and genetics. Without proper diagnosis of these strains, they may be mistaken for one another. Therefore, there is a need to distinguish CoViD-19 from the other two Coronaviruses to enhance prompt and specific treatment. In this study, we developed a deep learning model with a web console for the classification of genomic sequences of the three Coronavirus strains using genomic signal processing. The DNA sequences harvested from the Virus Pathogen Database and Analysis Resource (ViPR) was used as dataset and these sequences were transformed to RGB images using Voss and Z-curve encodings. A convolutional neural network (CNN) model was consequently used for classification and incorporated in a web application platform developed with the Django framework. The results of the transformation of the images highlights the similarities of the three coronaviruses in terms of visual and genetic characteristics with the CNN model distinctly classifying SARS-CoV-2, SARS-CoV and MERS-CoV with a training and validation accuracies of 95.58% and 85% respectively which compares favourably with other results in the literature. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

SELECTION OF CITATIONS
SEARCH DETAIL